Stellaromics, a pioneer in high-resolution 3D spatial biology, today announced the installation of its Pyxa™ 3D spatial multi-omics system at Emory University School of Medicine. Emory becomes the ...
Single-cell RNA transcriptomics allows researchers to broadly profile the gene expression of individual cells in a particular tissue. This technique has allowed researchers to identify new subsets of ...
Biological tissues are made up of different cell types arranged in specific patterns, which are essential to their proper functioning. Understanding these spatial arrangements is important when ...
Spatial transcriptomics and gene expression analysis represent a transformative approach in biomedical research, integrating the spatial context of tissues with high-resolution profiling of gene ...
PALO ALTO, Calif.--(BUSINESS WIRE)--Curio Bioscience today announced it has commenced commercial operations with the launch of Curio Seeker, the world’s first high-resolution, whole-transcriptome ...
This figure shows how the STAIG framework can successfully identify spatial domains by integrating image processing and contrastive learning to analyze spatial transcriptomics data effectively.
Challenges and Prospects. Challenges and prospects faced by spatial transcriptomics itself and its application to the musculoskeletal system. AI Artificial intelligence, FFPE Formalin fixed and ...
Conventional transcriptomic techniques have revealed much about gene expression at the population and single-cell level—but they overlook one crucial factor: spatial context. In musculoskeletal ...
Researchers at the John Innes Centre and the Earlham Institute are pioneering powerful single-cell visualisation techniques ...
Results that may be inaccessible to you are currently showing.
Hide inaccessible results